okama.AssetList.jarque_bera
- property AssetList.jarque_bera
Perform Jarque-Bera test for normality of assets returns historical data.
Jarque-Bera test shows whether the returns have the skewness and kurtosis matching a normal distribution (null hypothesis or H0).
- Returns:
- DataFrame
Returns test statistic and the p-value for the hypothesis test. large Jarque-Bera statistics and tiny p-value indicate that null hypothesis (H0) is rejected and the time series are not normally distributed. Low statistic numbers correspond to normal distribution.
See also
skewness
Compute skewness.
skewness_rolling
Compute rolling skewness.
kurtosis
Calculate expanding Fisher (normalized) kurtosis.
kurtosis_rolling
Calculate rolling Fisher (normalized) kurtosis.
kstest
Perform Kolmogorov-Smirnov test for different types of distributions.
Examples
>>> al = ok.AssetList(['GC.COMM', 'FNER.INDX'], first_date='2000-01', last_date='2021-01') >>> al.names {'GC.COMM': 'Gold', 'FNER.INDX': 'FTSE NAREIT All Equity REITs'} >>> al.jarque_bera GC.COMM FNER.INDX statistic 4.507287 593.633047 p-value 0.105016 0.000000
Gold return time series (GC.COMM) distribution have small p-values (H0 is not rejected). Null hypothesis (H0) is rejected for FTSE NAREIT Index (FNER.INDX) as Jarque-Bera test shows very small p-value and large statistic.